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PURPOSE 
The purpose of this study is to compare spectral segmentation, spectral radiomic, and single-
energy radiomic features in the assessment of internal and common carotid artery (ICA/CCA) 
stenosis and prediction of surgical outcome.

METHODS 
Our ethical committee–approved, Health Insurance Portability and Accountability Act (HIPAA)-
compliant study included 85 patients (mean age, 73 ± 10 years; male : female, 56 : 29) who under-
went contrast-enhanced, dual-source dual-energy CT angiography (DECTA) (Siemens Definition 
Flash) of the neck for assessing ICA/CCA stenosis. Patients with a prior surgical or interventional 
treatment of carotid stenosis were excluded. Two radiologists graded the severity of carotid ste-
nosis on DECTA images as mild (<50% luminal narrowing), moderate (50%-69%), and severe 
(>70%) stenosis. Thin-section, low- and high-kV DICOM images from the arterial phase acquisi-
tion were processed with a dual-energy CT prototype (DTA, eXamine, Siemens Healthineers) to 
generate spectral segmentation and radiomic features over regions of interest along the entire 
length (volume) and separately at a single-section with maximum stenosis. Multiple logistic 
regressions and area under the receiver operating characteristic curve (AUC) were used for data 
analysis.

RESULTS 
Among 85 patients, 22 ICA/CCAs had normal luminal dimensions and 148 ICA/CCAs had luminal 
stenosis (mild stenosis: 51, moderate: 38, severe: 59). For differentiating non-severe and severe 
ICA/CCA stenosis, radiomic features (volume: AUC = 0.94, 95% CI 0.88-0.96; section: AUC = 0.92, 
95% CI 0.86-0.93) were significantly better than spectral segmentation features (volume: 
AUC = 0.86, 95% CI 0.74-0.87; section: AUC = 0.68, 95% CI 0.66-0.78) (P < .001). Spectral radiomic 
features predicted revascularization procedure (AUC = 0.77) and the presence of ipsilateral intra-
cranial ischemic changes (AUC = 0.76).

CONCLUSION 
Spectral segmentation and radiomic features from DECTA can differentiate patients with differ-
ent luminal ICA/CCA stenosis grades.

Stroke is a substantial cause of mortality and morbidity around the world. According 
to the National Vital Statistics Reports, stroke was the fifth leading cause of death in 
the United States, claiming 146 383 lives in 2017 at 44.9 deaths per 100 000 popula-

tion.1 The National Health Interview Survey reported 7.8 million adults (3.1%) in the United 
States had a stroke in 2018.2 Based on the degree of internal carotid/common carotid artery 
(ICA/CCA) stenosis, stroke risk varies. Internal carotid/common carotid artery stenosis and 
plaques are responsible for 15% of stroke.3

In asymptomatic patients with more than 50% stenosis, annual stroke risk is up to 1%.4 The 
stroke risk increases with the increasing severity of stenosis. The therapeutic approach var-
ies with different degrees of stenosis with lifestyle changes for asymptomatic patients with 
low-grade stenosis. Symptomatic patients with moderate- or high-grade stenosis ben-
efit from medical therapy, carotid endarterectomy, carotid artery angioplasty, and/or stent 
placement according to the degree of stenosis.5
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The current methods for estimat-
ing ICA/CCA stenosis are subjective and 
include the North American Symptomatic 
Carotid Endarterectomy Trial (NASCET), 
the European Carotid Surgery Trial (ECST), 
and the Common Carotid (CC) method. 
The estimated degree of stenosis using 
these three methods varies due to differ-
ent measurement methods and the risk of 
inter- and intra-observer variations.6 Thus, 
an objective and quantitative approach for 
assessing the presence and degree of ICA/
CCA stenosis can help physicians identify 
high-risk patients and determine the best 
therapeutic option.

Radiomic features involve the extrac-
tion of quantitative features from medical 
images that radiologists cannot visually 
assess.7 Although most prior studies applied 
radiomic features to oncologic settings, a 
few vascular studies have reported on its 
potential.8,9 A previous study reported using 
these features to predict the severity and 
outcome in patients with coronary artery 
stenosis.8 Another study applied radiomic 
features to differentiate symptomatic and 
asymptomatic patients with intracranial 
atherosclerotic plaques.9 However, there 
is no study on the role of single or dual-
energy CT (DECT) radiomics or spectral 
segmentation features for predicting the 
severity of ICA/CCA stenosis and the need 
for endovascular treatment. 

The CT imaging with dual-energy/spec-
tral scan mode enables the extraction and 
quantification of certain spectral segmen-
tation features such as the amount and 
concentration of iodine and water distri-
bution within a region of interest (ROI).10 A 
few studies have assessed radiomic features 
of DECT-specific images such as iodine 
maps, virtual non-contrast (VNC), or virtual 
monoenergetic imaging (VMI).11-14 Prior 
studies in other body regions including 
bone marrow, lymph nodes, colon, and 

liver have applied quantitative informa-
tion from DECT to characterize focal and 
diffuse abnormalities.10,15 In our institution, 
dual-energy CT angiography (DECTA) is the 
preferred method of imaging patients with 
suspected or known ICA/CCA stenosis. Our 
study aimed to compare spectral segmen-
tation, spectral radiomic, and single-energy 
radiomic features in the assessment of ICA/
CCA stenosis and prediction of surgical 
outcomes.

Methods
Research ethics and disclosures

This study received institutional 
review board approval (protocol num-
ber: 2016P000767) and was compliant 
with the Health Insurance Portability and 
Accountability Act. The need for informed 
consent was waived due to the retrospec-
tive nature of the study and no substantial 
risks to the research subjects.

Patients
We identified 160 consecutive patients 

from our proprietary Radiology Information 
System (RIS) search engine, Render. The 
study included 85 patients (mean ± stan-
dard deviation of age: 73 ± 10; sex M/F: 
56/29) who met the inclusion and exclu-
sion criteria (Figure 1). The inclusion criteria 
were DECTA of the neck clinically indicated 
for evaluation of suspected or known ICA/
CCA stenosis on a dual-source, second-
generation, 128-slice CT scanner (Siemens 
Definition Flash, Siemens Healthineers). All 
patients who undergo CT angiography on 
this scanner are scanned in dual-energy 
scan mode. Patients scanned on other 
scanners and with a history of any ICA/CCA 
revascularization surgery, metallic or den-
tal implants in the region of ICA/CCA steno-
sis, ICA/CCA stents, or motion artifacts were 
excluded from the study (n = 75 patients). 
A physician coauthor (with 1-year post-
doctoral radiology research experience) 
identified the eligible cases from the RIS.

DECTA of neck
All DECTA of the neck were performed 

with dual-energy scan mode using 80 kV 
(x-ray tube A) and 140 kV with tin filter 
(x-ray tube B). The protocol uses combined 
angular and longitudinal modulation type 
of automatic exposure control (CareDose 
4D, Siemens Healthineers) with a quality 

reference mAs of 320 mAs for tube A. With 
dual-energy scan mode on dual-source 
CT, the quality reference mAs are set only 
for tube A, and the system automatically 
selects the corresponding value for tube 
B. The scanner estimates the applied mAs 
for both tubes based on the planning 
radiograph and the first 180° rotation. All 
patients received an intravenous bolus of 
80-100 mL of 350 mg% non-ionic contrast 
medium, Iohexol 350 mg% (Omnipaque 
350, GE Healthcare Inc.). The contrast was 
administered at 5 mL/s through the right 
antecubital vein in all patients, followed by 
40 mL of normal saline flush. The scan was 
triggered with a bolus tracking technique 
with the ROI in the ascending thoracic aorta.

The remaining scan parameters were 
pitch of 0.5 : 1, gantry rotation time of 
0.5 second, 128 × 0.6 mm detector con-
figuration, and a scanner-determined 
table speed. Thin-section images (1 mm 
thickness at 0.5 mm overlap) were recon-
structed for both high- and low-kV datasets 
using standard soft tissue reconstruction 
kernel with iterative reconstruction tech-
nique at a strength of 3 (Admire, Siemens 
Healthineers).

Image review
The thin-section images at both low- and 

high-tube potentials (80 and 140 Sn kV) 
were de-identified and exported offline. A 
radiologist (R.S. with 5-year radiology expe-
rience) reviewed the images and radiology 
reports to classify each of the 170 ICA/CCA 
into those without luminal narrowing and 
those with different luminal stenosis grades 
according to the NASCET method.16,17 
Luminal stenosis was graded as mild, mod-
erate, and severe based on <50%, 50%-70%, 
and >70% ICA/CCA luminal narrowing com-
pared to the distal luminal dimension of nor-
mal ICA. Cases with narrowing of distal ICA 
due to severe stenosis were instead graded 
as severe stenosis (near-occlusion). For each 
ICA/CCA, the annotations were performed 
at a single image or section with maximum 
luminal stenosis and all images spanning 
the entire length of luminal stenosis. The 
ROI included both the lumen and vessel 
wall or plaques if present. The presence of 
any motion or metal streak artifacts in the 
region of luminal stenosis was recorded.

Each patient’s head CT and/or MRI exams 
were reviewed to record evidence of cere-
brovascular ischemic stroke concordant 

Main points

• Spectral radiomic and segmentation 
features could differentiate between 
different degrees of ICA/CCA stenosis.

• Spectral radiomic features can predict 
revascularization and intracranial ischemic 
changes on CT and MRI.

• Spectral radiomic features can differentiate 
degrees of ICA/CCA stenosis with higher 
AUCs than segmentation features.
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with the vascular territory of the ana-
lyzed vessel. We recorded the history of 
any revascularization (endarterectomy), 
including carotid endarterectomy or ICA/
CCA stenting following DECTA. The indica-
tion for revascularization therapy included 
severe, symptomatic ICA/CCA stenosis 
(20/25 patients) in patients with at least 
5-year life expectancy and mild or moder-
ate ICA/CCA stenosis and plaques with a 
history of embolic strokes (5/25 patients). 
To perform reliability analysis, a second 
radiologist (M.K.K., 21-year post-radiology 
residency experience) performed manual 
segmentation of 50 ICA/CCA in a randomly 
selected subset of 25 patients.

Post-processing for spectral 
segmentation

We used a Dual-Energy Tumor Analysis 
(DETA) prototype (eXamine, Siemens 
Healthineers) to obtain spectral segmen-
tation and radiomic features over both 
the section with maximal stenosis and the 
entire length of stenosis (Figure 2). For ICA/
CCA without stenosis, these features were 
extracted at the carotid bulb section and 
over a 3 cm length centered at the carotid 
bifurcation. The prototype enables the use 
and review of transverse images as well as 
coronal and sagittal multiplanar images so 
that segmentation can be performed with 
the help of any or all of the three planes. 

To estimate normalized iodine uptake (the 
quotient of iodine concentration in the IAC/
CCA and the iodine concentration in the 
aorta), a 1 cm ROI was placed in the aortic 
arch.

The prototype generates 3 image sub-
types, including mixed volume (a linear 
blend of high- and low-kV images), mate-
rial decomposition iodine, and water 
(VNC) images from the thin-section 
(≤1 mm) low- and high-tube potential 
image series. The use of thin images in our 
study is in line with previously reported 
improved performance of radiomic features 
with a section thickness of 0.5-1 mm.18 In 
the next step, the software generates the 

Figure 1. Flow diagram summarizes distribution of ICA/CCA stenosis and inclusion and exclusion criteria as well as evaluation process for obtaining 
radiomic and segmentation features. ICA/CCA, internal and common carotid artery; DECTA, dual-energy CT angiography; DETA, dual-energy tumor 
analysis; ROC, receiver operating characteristic.
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following spectral features within the 
ROI—mean mixed CT values (mean HU 
from mixed volume DECT images), mean 
iodine CT values (mean HU from mate-
rial density iodine images), mean VNC CT 
values (derived by subtracting the mean 
iodine HU from the mean mixed HU), total 
iodine uptake (total amount of iodine), 
total iodine concentration (iodine within 
per unit volume in mg/mL), vital iodine 
uptake (iodine uptake within the part of 
the ROI that excludes the non-enhancing 
portion), and vital iodine concentration 
(iodine concentration within the part of the 
ROI that excludes the non-enhancing por-
tion). These features were estimated for the 
length of the stenosis and at the level of 
maximal stenosis.

In addition to spectral segmentation 
features, radiomic features were derived 
for the five image series (low kV, high kV, 
mixed volume, material density iodine, 
and VNC series). The low- and high-kV 
radiomic features represent single-energy 

radiomics, whereas spectral radiomic fea-
tures are acquired from mixed-volume 
and material density images. Both types 
of radiomics are categorized into shape 
features, first-order, second-order, and 
higher-order features.

The shape features describe voxel volume, 
surface area, sphericity, compactness, maxi-
mum diameter, axis length, elongation, and 
flatness. The first-order statistics features 
included entropy, minimum, maximum, 
mean, median, range, interquartile range, 
10th percentile, 90th percentile, standard 
deviation of voxel intensities, skewness 
(asymmetry), kurtosis (flatness), and uni-
formity (homogeneity) within the ROI. The 
second-order statistics were gray-level co-
occurrence matrix (GLCM; n = 23 features), 
neighboring gray-tone difference matrix 
(NGTDM; n = 5), gray-level size zone matrix 
(GLSZM; n = 16), gray-level run-length 
matrix (GLRLM; n = 16), and gray-level 
dependence matrix (GLDM, n = 14). These 
features indicate heterogeneity within the 

ROI by estimating the relationship between 
neighboring voxels. The higher-order fea-
tures included square, square root, loga-
rithm, exponential, logarithm, and wavelet 
transform of the radiomics above.19,20

Our prototype interfaces with the 
PyRadiomics library for the computa-
tion of radiomic features, like 3D Slicer’s 
Radioimcs plugin.21,22 This public domain 
library offers customization of image pre-
processing before feature extraction with 
Laplacian of Gaussian filtering, wavelet 
filtering, as well as non-linear intensity 
transforms. The PyRadiomics website stan-
dardizes radiomic features for interopera-
bility across datasets. We did not apply any 
resampling or normalization during calcu-
lation of radiomics since we used a single 
CT scanner (which has absolute gray levels 
compared to relative signal intensity with 
MRI) for all included exams, with identical 
slice thickness, matrix, and pixel size. We 
used bin-width discretization technique 
with a bin-width set at 25.

Figure 2. a-l. Transverse (a, b, e, f, i, j) and coronal (c, d, g, h, k, l) multiplanar DECTA images obtained for evaluation of ICA/CCA stenosis in 3 patients. 
(a-d) Images of a 64-year-old male show unannotated and annotated (in pink) internal carotid arteries with mild luminal stenosis. (e-h) Images of a 
78-year-old male depict unannotated and annotated (in pink) internal carotid arteries with moderate stenosis. (i-l) Images of a 77-year-old male 
demonstrate unannotated and annotated (in pink) ICA/CCA with occlusion.
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Statistical analysis
For statistical analyses, we imported data 

on the spectral and radiomic features into 
another prototype (FRONTIER, Siemens 
Healthineers). Univariate analysis, multiple, 
and multivariate logistic regression tests 
were performed with the area under the 
receiver operating characteristics curve 
(AUC) and P values for statistical signifi-
cance as outputs. The cutoff values for best 
individual features were obtained from 
Youden J index (MedCalc, Version 19.7.4). 
In order to determine the best model for 
multiple logistic regression analysis, t test/
ANOVA for each feature is performed to 
detect the statistical significance. The least 
significant difference (LSD) post hoc test 
was performed for significant P values 
in ANOVA analysis. The P values are cor-
rected for multiple testing with Benjamini-
Hochberg false discovery rate (FDR). 
Features with a corrected P value of <.05 
are considered statistically significant and 
selected for further analysis. For the remain-
ing set of statistically significant features, a 
minimum redundancy maximum relevance 
(mRMR) feature selection is applied to elim-
inate irrelevant and redundant features. To 
keep the 1-in-10 rule, we limited the mRMR 
feature selection to four features. With 
these resulting 4 features, a step-wise for-
ward selection is applied. The best subset is 
selected using the Akaike information crite-
rion (AIC).23 A Hosmer-Lemeshow test and 
Omnibus test were performed to assess the 
goodness-of-fit for logistic regression and 
assess if the new model is an improvement 
over the baseline model. Multinominal 
logistic regression analysis was performed 
for the best radiomic features to find the 
best model for grading stenosis. The logistic 

regression analysis was performed using 
the following formula: x represents the fea-
ture values and β values are coefficients, 
with β0 as intercept: f (x)= 1/(1+ e^(- (β0 + β1 

x1 + β 2 x 2 + … + ei))).
Statistical analyses were performed 

to compare spectral and single-energy 
radiomics for the presence and severity 
of ICA/CCA stenosis. Likewise, the per-
formance of spectral segmentation and 
radiomics features was compared for the 
presence of stenosis, different grades of 
stenosis (severe versus non-severe steno-
sis), and prediction of invasive revascular-
ization treatment and ischemic changes 
on brain CT/MRI. Descriptive statistics were 
given the frequency with percentages and 
mean ± standard deviation. Chi-square test 
was performed to compare categorical vari-
ables. T test was performed to compare the 
means of numerical variables. To compare 
the AUCs, De-long test was performed. All 
statistical analyses were performed with 
python-based statistical tools built into the 
prototype as well as SPSS statistical pro-
gram (version 24, IBM).

Results
There were no motion or metal-related 

artifacts in the regions of ICA/CCA in any 
patients. Of the 170 ICA/CCA included in 
our study, 22 (12.94%) ICA/CCA had no 
luminal stenosis, and the remaining 51 
(%30.00) had mild, 38 (22.35%) moderate, 
or 59 (34.71%) severe stenosis based on the 
NASCET method15,16 (Table 1). Patients with 
normal and severe stenosis of the carotid 
lumen were significantly younger than 
those with mild (P = .037) or moderate ste-
nosis (P = .013).

Of the 85 patients included in the study, 
25 patients (29.41%) underwent a revascu-
larization procedure. Of these 25 patients, 
20 had severe (80.00%) ICA/CCA stenosis, 
4 had moderate luminal stenosis (16.00%), 
and 1 patient (4.00%) had mild stenosis 
(Table 1). Spectral radiomic features (GLDM 
large-dependence high gray-level empha-
sis and GLDM low gray-level emphasis) from 
mixed volume images predicted revascular-
ization procedure with an AUC of 0.77 (95% 
CI 0.72-0.81) and the presence of ipsilateral 
intracranial ischemic changes correspond-
ing to the ICA artery territory (30 patients, 
35.29%) on head CT and MRI with an AUC 
of 0.76 (95% CI 0.66-0.85) (Table 1). There 
was no difference in the AUCs for radiomics 
from single-section versus the length of 
luminal stenosis (P = .430). Neither spectral 
segmentation features (AUC = 0.68, 95% CI 
0.41-0.86) nor the degree of luminal ste-
nosis (AUC = 0.63, 95% CI 0.45-0.73) were 
strong predictors of revascularization or 
the presence of CT/MR finding of stroke in 
patients with ICA/CCA stenosis.

Both single-energy (AUCs = 0.89-0.91) 
and spectral (AUCs = 0.92-0.94) had simi-
lar AUCs for differentiating severe and 
non-severe ICA/CCA stenosis from single-
section and length-based evaluation of 
the vessels (P = .163). Both single-energy 
and dual-energy CT radiomic features had 
identical AUCs (0.99, 95% CI 0.97-1) over 
the length of ICA/CCA for differentiating 
ICA/CCA with and without luminal stenosis 
(P = .412). However, single section-based 
single-energy radiomics had a non-signif-
icant lower AUC (0.89, 95% CI 0.83-0.93) 
for differentiating severe and non-severe 
stenosis of ICA/CCA as compared to single-
section spectral radiomics (AUC = 0.92, 95% 

Table 1. Summary of demographics and revascularization in patients with different grades of ICA/CCA stenosis based on the NASCET method

Demographic summary of patients with and without ICA/CCA stenosis

Patient information No stenosis Mild Moderate Severe P 

Number of patients* 20 (13.98%) 45 (31.46%) 32 (22.37%) 46 (32.16%) –

Number of carotid 
arteries 

22 (12.94%) 51 (30.00%) 38 (22.35%) 59 (34.70%) –

Age (years), mean ± SD 70 ± 10 75 ± 10 76 ± 8 71 ± 10 .009

Sex (M/F) 12/10 (54.54%/45.45%) 38/13 (74.51%/25.49%) 20/18 (52.63%/47.37%) 42/17 (71.19%/28.81%) .084

Endarterectomy (Y/N) 0/22 (0.00%/100.00%) 1/50 (2.00%/98.00%) 4/34 (10.53%/89.47%) 20/39 (33.90%/66.10%) <.001

Ischemic changes on 
CT/MRI (Y/N)

1/21 (4.54%/95.45%) 4/47 (7.84%/92.16%) 10/28 (26.32%/73.68%) 15/44 (25.42%/74.58%) .016

The frequencies are reported for categorical variables with percentage in parentheses.
ICA/CCA, internal and common carotid artery; NASCET, North American Symptomatic Carotid Endarterectomy Trial; SD, standard deviation; M/F, male/female; Y/N, yes/no; CT, 
computed tomography; MRI; magnetic resonance imaging.
*The total number of patients exceed 85 patients as some patients had different grades of stenosis on either side. 
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CI 0.85-0.96) (P = .204). Spectral radiomic 
features had higher AUCs in differentiating 
moderate and severe luminal stenosis than 
single-energy radiomic features over the 
length of stenosis (AUC = 0.92, 95% CI 0.83-
0.95 vs. 0.89, 95% CI 0.83-0.93; P = .461) as 
well as a single section (AUC = 0.86, 95% 
CI 0.80-0.91 vs. 0.82, 95% CI 0.77-0.85; 
P = .359).

Area under the receiver operating char-
acteristics curves and best predictive spec-
tral segmentation and radiomic features 

for differentiating between different ICA/
CCA stenosis grades are summarized in 
Tables 2 and 3. For differentiating non-severe 
and severe ICA/CCA stenosis, radiomic fea-
tures (volume: AUC = 0.94, 95% CI 0.88-0.96; 
section: AUC = 0.92, 95% CI 0.86-0.93) were 
significantly better than spectral segmen-
tation features (volume: AUC = 0.86, 95% 
CI 0.74-0.87; section: AUC = 0.68, 95% CI 
0.66-0.78) (P < .001). Spectral radiomic 
features from single-section as well as 
over the length of ICA/CCA (AUC = 0.91, 

95% CI 0.82-0.94 and AUC = 0.92, 95% CI 
0.87-0.96) had significantly higher AUC 
compared to corresponding spectral seg-
mentation features (AUC = 0.76, 95% CI 
0.62-0.81 and AUC = 0.75, 95% CI 0.64-
0.85) for differentiating mild and moderate 
stenosis and moderate and severe stenosis 
(P < .001) (Figure  3) (Tables 2 and 3). For 
differentiating mild and normal stenosis, 
spectral radiomic and segmentation fea-
tures had similar AUCs (P = .081). The best 
10 radiomic features for differentiating 
grades of stenosis on univariate logistic 
regression analysis are shown in Figure 4.

On the other hand, both spectral seg-
mentation and radiomic features had simi-
lar high predictive values for differentiating 
normal and mild ICA/CCA (Tables 2 and 3). 
This high predictive value was true at the 
single-section and over the length of ICA/
CCA stenosis.

The highest AUCs for differentiating 
moderate and severe ICA/CCA stenosis 
belonged to spectral radiomic features 
extracted from the length and single-
section of ICA/CCA (AUC = 0.92, 95% CI 
0.83-0.95 and AUC = 0.86, 95% CI 0.80-
0.91) followed by spectral segmentation 
features over the length and single-section 
ROIs (AUC = 0.80, 95% CI 0.75-0.82 and 
AUC = 0.74, 95% CI 0.73-0.77). The cutoff 
values for the best spectral radiomic and 
segmentation features are summarized in 
Tables 2 and 3.

Hosmer-Lemeshow test did not reveal 
any significant difference in the goodness-
of-fit of the model between different grades 
of stenosis (P = .342). Omnibus test revealed 
a −2 Log likelihood of 65.6, a Nagelkerke R 
square of 0.66, and P value < .001.

The formulae for best spectral radiomics 
over ICA/CCA length were:

Differentiating normal lumen and  
mild stenosis: f(x) = 1/(1+e^(− (−115.6 + 48.5  
x1 −0.2 x2 – 118.0 x3 + 97.5 x4 + 26.5 x5))) [x1: 
Wavelet-zone entropy (GLSZM); x2: Original-
10th percentile (first order); x3: Wavelet 
low gray-level zone emphasis (GLSZM); x4: 
Logarithm-Imc2 (GLCM); x5: Square root-nor-
malized gray-level non-uniformity (GLSZM)].

Differentiating mild and moderate steno-
sis: f(x) = 1/(1+e^ (−(−23.9 + 2.0 x1 + 0.01 x2 – 
17.2 x3 + 16.9 x4 − 0.1 x5 + 0.4 x6))) [x1: Square 
root–joint entropy (GLCM); x2: Wavelet 
large-dependence high gray-level empha-
sis (GLDM), x3: Wavelet-Imc1 (GLCM), x4: 
Square-maximum probability (GLCM), 
x5: Logarithm-size zone non-uniformity 
(GLSZM); x6: Wavelet-kurtosis (first order)].

Table 2. Summary of the best single-energy radiomic and spectral radiomic and segmentation 
features over the single section with maximum ICA/CCA stenosis as well as AUCs and P values 
based on multiple logistic regression 

Best spectral radiomic and segmentation features for single-section data

Best features AUC (95% CI) P

Severe vs. moderate stenosis

Single-energy Exponential-dependence variance (GLDM) 
(≤44.5) + original-minimum (first order) (≤968)

0.82 (0.77-0.85) .003

Spectral radiomic Logarithm-dependence variance (GLDM) 
(≤50.9) + original-minimum (first order) 
(≤988) + exponential-dependence variance 
(GLDM) (≤41.3)

0.86 (0.80-0.91) .013

Spectral 
segmentation 

Maximum iodine histogram index (≤1762) 0.74 (0.73-0.77) <.001

Moderate vs. mild stenosis

Single-energy 
radiomic

Original-maximum probability (GLCM) 
(≤0.1) + original-Maximum 2D diameter (shape) 
(>11.6) + Wavelet-normalized dependence 
non-uniformity (GLDM) (≤0.08)

0.86 (0.80-0.89) .031

Spectral radiomic Original-dependence variance (GLDM) 
(≤42.7) + square root large dependence high 
gray-level emphasis (GLDM) 
(≤10111) + Exponential small-dependence low 
gray-level emphasis (GLDM) (>0.003) + Wavelet-
Idn (GLCM) (≤0.9) + exponential-Imc1 (GLCM) 
(>−0.3)

0.91 (0.82-0.94) .036

Spectral 
segmentation 

Mean Vnc (>103.9) + mean mixed (>313.9) 0.76 (0.62-0.81) .034 

Mild vs. normal lumen

Single-energy 
radiomic

Logarithm-Imc2 (GLCM) (>0.8) + logarithm-
skewness (first order) (>−1.1) + exponential-
maximum probability (GLCM) (≤0.9) + square 
root–correlation (GLCM) (>0.8) + logarithm—
run entropy (GLRLM) (>4.1)

0.99 (0.99-1) <.001

Spectral radiomic Square root–dependence entropy (GLDM) 
(>6.5) + logarithm first order (skewness) 
(>−1.0) + original-Imc1 (GLCM) 
(>−0.3) + Wavelet-long-run low gray-level 
emphasis (GLRLM) (≤0.07) + square root–
maximum probability (GLCM) (≤0.3)

0.99 (0.99-1) <.001

Spectral 
segmentation 

Standard deviation (>77.2) + max extension 
Z (>14) + max iodine histogram index 
(>1558) + min iodine histogram index (≤1017)

0.99 (0.98-1) .002

Cutoff values are shown in parentheses for each feature.
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Differentiating moderate and severe ste-
nosis: f(x) = 1/(1+e^ (−(46.6 – 0.1 x1 – 0.3 x2 
– 8.3 x3 ))) [x1: Original-10th percentile (first 
order); x2: Wavelet-dependence variance 
(GLDM); x3: Wavelet-mean (first order)].

Using multivariate logistic regression 
model, spectral radiomic features over 
the length could differentiate between 

different grades of stenosis with an AUC 
of 0.94 (95% CI 0.88-0.96) for the combina-
tion of square root large-dependence high 
gray-level emphasis (GLDM) (OR = 5.9, 95% 
CI 2.0-16.5, P = .001), original-10 percen-
tile (first order) (OR = 5.9, 95% CI 2.8-12.9, 
P < .001), Wavelet-dependence variance 
(GLDM) (OR = 1.8, 95% CI 0.9-3.3, P = .053), 

and Wavelet-inverse variance (GLCM) 
(OR = 2.8, 95% CI 1.4-5.5, P = .002). Spectral 
segmentation features could differentiate 
between four grades of stenosis with an 
AUC of 0.86 (0.74-0.91) for the combination 
of vital iodine concentration (OR = 55.3, 
95% CI 14.6-209.9, P < .001) and mean 
mixed (OR = 18.1, 95% CI 5.9-54.5, P < .001).

Multinominal regression analysis revealed 
an overall sensitivity of 66.9% and 93.2% for 
differentiating mild, moderate, and severe 
stenosis from the best segmentation and 
radiomic features with a P = .850 for the 
model goodness-of-fit (Table 4).

Both radiologists obtained high AUCs 
for spectral radiomics (AUC, radiologist 
1 = 0.95-0.99 vs. AUC, radiologist 2 = 0.98-
1.00) and spectral segmentation features 
(AUC, radiologist 1 = 0.78-0.89 vs. AUC, radi-
ologist 2 = 0.89-0.95) for differentiating dif-
ferent grades of ICA/CCA stenosis.

Discussion
Spectral radiomic features extracted 

from the length of stenosis were the best 
differentiator of normal and stenotic ICA/
CCA, severe and non-severe stenosis, and 
moderate and severe stenosis of ICA/
CCA (per NASCET method) compared to 
spectral segmentation and single-energy 
radiomic features. Among these, the first- 
and higher-order spectral radiomic features 
were the best predictors of abnormal ICA/
CCAs, as well as different grades of lumi-
nal stenosis. Although not as strong, the 
spectral segmentation and single-energy 
radiomic features were good differentiators 
of severe and non-severe ICA/CCA stenosis 
and normal and stenotic ICA/CCA. There are 
no published studies on the use of spec-
tral radiomic or segmentation features for 
assessing ICA/CCA stenosis. Prior studies 
have reported on radiomics in ultrasound 
and single-energy CT of carotid arteries.24-26 
Acharya  et  al. reported an 88% accuracy 
and specificity of about 87% for classifying 
symptomatic and asymptomatic carotid 
plaques with machine learning–based 
radiomic features from single-energy CT.24 
Spectral radiomic features in our study 
could also predict both revascularization 
and intracranial ischemic changes on CT 
and MRI. The ability to detect and clas-
sify the severity of ICA/CCA stenosis in our 
study with both single- and dual-energy 
features is in line with the prior study from 
Acharya  et  al., who reported the ability to 
estimate luminal stenosis from radiomics.24

Table 3. Summary of the best single-energy radiomic and spectral radiomic and segmentation 
features over the length of ICA/CCA stenosis as well as AUCs and P values based on multiple-
logistic regression

Best spectral radiomic and segmentation features along the length of ICA/CCA stenosis

Best features AUC (95% CI) P

Severe vs. moderate stenosis

Single-energy Original-10th percentile (first order) 
(≤1147) + logarithm-dependence variance 
(GLDM) (≤62.9) + Wavelet-minimum (first 
order) (>-10.2)

0.89 (0.83-0.93) .026

Spectral radiomics Original-10th percentile (first order) 
(≤1129) + Wavelet-dependence variance 
(GLDM) (≤38.7) + Wavelet-mean (first order) 
(≤0.1)

0.92 (0.83-0.95) .029

Spectral 
segmentation 

Total iodine concentration (≤9.2) + mean 
mixed (≤314.0)

0.80 (0.75-0.82) .018

Moderate vs. mild stenosis

Single-energy Square root-Idn (GLCM) (≤0.9) + Wavelet-Imc1 
(GLCM) (≤-0.007) + Wavelet-median (first 
order) (≤-0.01)

0.87 (0.77-0.90) .032

Spectral radiomic Square root-joint entropy (GLCM) 
(>6.8) + Wavelet-large dependence high 
gray-level emphasis (GLDM) 
(≤65430) + Wavelet-Imc1 (GLCM) (>-
0.2) + square-maximum probability (GLCM) 
(≤0.2) + logarithm-size zone non-uniformity 
(GLSZM) (>48.8) + Wavelet-kurtosis (first 
order) (≤9.3)

0.92 (0.87-0.96) .020

Spectral 
segmentation 

Mean Vnc (>103.9) 0.75 (0.64-0.85) <.001

Mild vs. normal lumen

Single-energy Original-normalized gray-level non-
uniformity (GLSZM) (≤0.08) + Wavelet-
uniformity (first order) (≤0.5) + original-10th 
percentile (first order) (≤1215) + Wavelet-low 
gray-level emphasis (GLDM) 
(≤0.6) + logarithm-normalized gray-level 
non-uniformity (GLSZM) (≤0.2) + exponential-
Imc1 (GLCM) (≤-0.2)

0.98 (0.97-0.99) .003

Spectral radiomic Wavelet-zone entropy (GLSZM) (>6.6)+ 
original-10th percentile (first order) 
(≤1133) + Wavelet-low gray-level zone 
emphasis (GLSZM) (≤0.4) + logarithm-Imc2 
(GLCM) (>0.8) + square root–normalized 
gray-level non-uniformity (GLSZM) (≤0.1)

0.99 (0.98-0.99) .015 

Spectral 
segmentation 

Standard deviation (>77.2) + max extension 
Z (>14) + max iodine histogram index 
(>534) + min iodine histogram index (≤1017)

0.99 (0.97-0.99) .002

Cutoff values are shown in parentheses for each feature. 
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The presence of material decomposi-
tion iodine and water images from DECT 
provides additional information compared 
to the single-energy CT images. However, 
only a few studies have assessed the per-
formance of spectral radiomic features. 
In a study of metastatic lymph nodes in 
patients with gastric adenocarcinoma, 
spectral radiomic features predicted the 
presence of lymph nodal metastases in 
both arterial (AUC = 0.71) and venous 
(AUC = 0.76) phases.16 Zhou  et  al. reported 
improved diagnostic performance for dif-
ferentiating metastatic and non-metastatic 
cervical lymph nodes in patients with 
papillary thyroid carcinoma with radiomic 
features from DECT-derived iodine maps 
than with the conventional CT imaging 
features.13

Beyond carotid arteries, Inoue and col-
leagues reported using texture features 
to differentiate stable and vulnerable 
coronary plaques.27 Most studies on ICA/
CCA atherosclerosis focus on evaluating 
and quantifying atherosclerotic plaques 

and calcium burden.28,29 The amount of 
ICA/CCA calcification, stenosis, and the 
unstable fibrous cap is related to a higher 
stroke rate.29 Unlike previous studies, 
which were limited to the evaluation of 
carotid plaques and calcium burden, we 
performed a combined assessment of both 
the plaques and lumen of the ICA/CCA.28-30  
Since our regions of interest included 
both the plaque and lumen of ICA/CCA, 
the performance of radiomic and spectral 
segmentation features was likely a result 
of combining information related to both 
the plaques and the luminal dimension. 
With a greater degree of luminal stenosis, 
the plaque volume and its CT numbers 
have a greater contribution to radiomics 
and spectral segmentation features than 
a smaller contribution from the stenosed 
lumen. Conversely, in patients with no or 
mild luminal stenosis, luminal contrast 
contributes to the major share of more 
homogeneous CT numbers and statistics 
than smaller and possibly more homoge-
neous atherosclerotic plaques. Thus, the CT 

numbers from plaque’s calcified and non-
calcified components and luminal contrast 
vary based on the size and composition of 
plaque and degree of luminal stenosis (less 
iodine-related HU in the presence of severe 
stenosis). Due to these changes in distri-
bution (with larger plaques) and intensity 
(due to differences in grades of stenosis) of 
CT numbers and iodine, we obtained high 
AUCs for radiomic and segmentation fea-
tures. Also, since DECT can better assess 
quantitative changes in iodine uptake 
compared to single-energy CT, it is not sur-
prising that the former outperformed the 
latter.

The major implication of our study is the 
ability to predict ipsilateral cerebrovascu-
lar stroke, revascularization surgery, and 
degree of luminal ICA/CCA stenosis with 
a combined evaluation of vessel wall and 
the lumen of ICA/CCA with radiomics and 
spectral segmentation features. The rea-
son radiomics outperformed the degree 
of luminal stenosis for outcome prediction 
(revascularization and intracranial isch-
emic changes) was likely related to the 
combined evaluation of both the plaques 
and the lumen. Presently, neither radiomic 
nor spectral segmentation features are 
approved for clinical use due to a lack of 
defined technical requirement and accu-
racy data related to their use. With increas-
ing scientific evidence, these techniques 
can become automated and integrated 
with clinical workflow. For example, as 
opposed to manual identification and 
segmentation of ICA/CCA, integration of 
machine learning–based automatic seg-
mentation of carotid arteries can help 
bring radiomic and spectral segmenta-
tion features closer to an efficient clini-
cal use.31,32 Such integration will help save 
time and make the segmentation process 
less prone to subjective variations associ-
ated with manual segmentation. As in our 
study, several prior studies have reported 
using machine learning-based prototypes 
and methods to simplify and automate 
complex analyses of hundreds of quantita-
tive features generated from radiomic and 
segmentation features.31,32 Such automa-
tion can help identify and reduce specific 
radiomic and segmentation features to the 
most important ones. Future studies with 
larger sample size can define cutoff values 
for spectral segmentation and radiomic 
features to distinguish patients with differ-
ent grades of stenosis and help predict the 
need for invasive treatment.

Figure 3. a-c. Moderate vs. severe stenosis (a): AUC = 0.92 belongs to spectral radiomics (the length 
of ICA/CCA stenosis); AUC = 0.86 belongs to spectral radiomics (for single-section data); AUC = 0.80 
belongs to spectral segmentation (the length of ICA/CCA stenosis); and AUC = 0.74 belongs to 
spectral segmentation (for single-section data). Mild vs. moderate stenosis (b): AUC = 0.92 belongs to 
spectral radiomics (the length of ICA/CCA stenosis); AUC = 0.91 belongs to spectral radiomics (for 
single section data); AUC = 0.75 belongs to spectral segmentation (the length of ICA/CCA stenosis); 
and AUC = 0.76 belongs to spectral segmentation (for single-section data). Mild stenosis vs. normal 
lumen (c): AUC = 0.99 belongs to spectral radiomics (the length of ICA/CCA stenosis); AUC = 0.99 
belongs to spectral radiomics (for single-section data); AUC = 0.99 belongs to spectral segmentation 
(the length of ICA/CCA stenosis); and AUC = 0.99 belongs to spectral segmentation (for single-section 
data).
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Figure 4. a-c. Moderate versus severe stenosis (a), mild versus moderate stenosis (b), and mild stenosis versus normal lumen (c). The 10 best features with 
highest area under the curves on univariate logistic regression analysis for radiomic features from the length.
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There are a few limitations to our study. 
Our sample size was limited in terms of the 
number of overall patients and those in 
each subgroup of luminal stenosis. This was 
related to the fact that the assessed propri-
etary prototype can only process data from 
dual-source DECT examinations. A substan-
tial number of our patients are scanned with 
single-energy or non-dual-source DECT tech-
niques. Therefore, our study results may not 
be generalizable to single- or dual-energy 
examinations performed on other vendor 
scanners. A limitation of our study pertains 
to the lack of reproducibility evaluation since 
the number of cases in different subgroups 
(normal versus stenotic ICA/CCA) was insuf-
ficient for splitting data into training and test 
groups to create a machine learning–based 
model.33 Likewise, our results may not be 
generalizable to other sites with different 
scan acquisition and reconstruction param-
eters, which can affect the estimation of 
radiomic features. Another limitation of our 
study pertains to the exclusion of patients 
with artifacts (streaks and motion). Although 
our results may not be reproducible in set-
tings of these artifacts, such artifacts nega-
tively affect the subjective interpretation 
of ICA/CCA as well. Finally, we performed 
subjective and manual segmentation of 
ICA/CCA, which may have introduced bias. 
Interestingly, a prior study on radiomics of 
coronary atherosclerotic plaque reported 
lower reproducibility of plaque segmenta-
tion with expert radiologists as compared to 
non-expert readers.34,35 These studies under-
score the need for accurate and automatic 
segmentation of blood vessels. Currently, 
the prototype cannot automatically identify 
or segment ICA/CCA.

In conclusion, spectral radiomic and seg-
mentation features are highly predictive of 
the presence and severity of ICA/CCA ste-
nosis from DECTA when regions of interest 
include both the vessel wall and the lumen. 

Only the spectral radiomic features could 
predict revascularization surgery and the 
presence of intracranial ischemic changes.
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